Real-time in vivo imaging of p16Ink4a reveals cross talk with p53

نویسندگان

  • Kimi Yamakoshi
  • Akiko Takahashi
  • Fumiko Hirota
  • Rika Nakayama
  • Naozumi Ishimaru
  • Yoshiaki Kubo
  • David J. Mann
  • Masako Ohmura
  • Atsushi Hirao
  • Hideyuki Saya
  • Seiji Arase
  • Yoshio Hayashi
  • Kazuki Nakao
  • Mitsuru Matsumoto
  • Naoko Ohtani
  • Eiji Hara
چکیده

Expression of the p16(Ink4a) tumor suppressor gene, a sensor of oncogenic stress, is up-regulated by a variety of potentially oncogenic stimuli in cultured primary cells. However, because p16(Ink4a) expression is also induced by tissue culture stress, physiological mechanisms regulating p16(Ink4a) expression remain unclear. To eliminate any potential problems arising from tissue culture-imposed stress, we used bioluminescence imaging for noninvasive and real-time analysis of p16(Ink4a) expression under various physiological conditions in living mice. In this study, we show that oncogenic insults such as ras activation provoke epigenetic derepression of p16(Ink4a) expression through reduction of DNMT1 (DNA methyl transferase 1) levels as a DNA damage response in vivo. This pathway is accelerated in the absence of p53, indicating that p53 normally holds the p16(Ink4a) response in check. These results unveil a backup tumor suppressor role for p16(Ink4a) in the event of p53 inactivation, expanding our understanding of how p16(Ink4a) expression is regulated in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی بیان ژنهای P16 INK4A و P14ARF  در فازهای مختلف لوسمی میلوئیدی مزمن

Background & Aim : Chronic myeloid leukemia (CML) is a disorder of pluripotential hematopoietic stem cell that is as a myeloproliferative disease and occurs in about 15 percent of all leukemia. Two cell cycle regulatory proteins that function as tumor suppressor are P16INK4A and P14ARF. The origin of these two proteins is a human INK4A-ARF gene locus that located on chromosome 9p21. P16INK4A co...

متن کامل

Clinical relevance of dominant-negative p73 isoforms for responsiveness to chemotherapy and survival in ovarian cancer: evidence for a crucial p53-p73 cross-talk in vivo.

PURPOSE We aimed to determine the clinical role of the p53 family members p53 and p73 in the responsiveness to platinum-based chemotherapy and survival in ovarian cancer, considering their cross-talk and the p53 polymorphism at codon 72. EXPERIMENTAL DESIGN A detailed analysis of p53 and p73 in a series of 122 ovarian cancers was done. We used a functional yeast-based assay to determine the p...

متن کامل

Adipose Stem Cells as a Feeder Layer Reduce Apoptosis and p53 Gene Expression of Human Expanded Hematopoietic Stem Cells Derived from Cord Blood

Introduction: Human hematopoietic stem cells (hHSCs) have been used for transplantation in hematologic failures. Because the number of hHSCs per cord blood unit is limited, the expansion of these cells is important for clinical application. It has been reported that cytokines and feeder layer provide a perspective to in vitro expansion of hHSCs. In this regard, cord blood CD34+ cells ex...

متن کامل

Effect of 5-aza-2′-deoxycytidine on p16INK4a, p14ARF, p15INK4b Genes Expression, Cell Viability, and Apoptosis in PLC/PRF5 and MIA Paca-2 Cell Lines

Background: Mammalian cell division is regulated by a complex includes cyclin-dependent kinases (Cdks) and cyclins, Cdk/cyclin complex. The activity of the complex is regulated by Cdk inhibitors (CKIs) compressing CDK4 (INK4) and CDK-interacting protein/kinase inhibitory protein (CIP/KIP) family. Hypermethylation of CKIs has been reported in various cancers. DNA methyltransferase inhibitors (DN...

متن کامل

Effect of 5- azacytidine (5-aza-CR on the expression of DNMT1, DNMT3A, DNMT3B, p14ARF, p16INK4a, and p15INK4b, cell growth inhibition and apoptosis induction lung cancer A549 cell line

Background and aim: Lung cancer is one of the most leading causes of cancer death in males and females and the second leading cause of cancer death. Epigenetic alterations, including DNA hypermethylation, histone deacetylation, and miRNAs lead to the silencing of tumor suppressor genes (TSGs) resulting in tumorigenesis. This change has been reported in various cancers. The activity of DNA meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 186  شماره 

صفحات  -

تاریخ انتشار 2009